

 Pop PHP Framework

 latest

 	Overview
	Installation
	Getting Started
	User Guide
	Tutorial Application
	Reference	pop-acl
	pop-application
	pop-audit
	pop-auth
	pop-cache
	pop-code
	pop-config
	pop-console
	pop-controller
	pop-cookie
	pop-css
	pop-csv
	pop-db
	pop-debug
	pop-dir
	pop-dom
	pop-event
	pop-filter
	pop-form
	pop-ftp
	pop-http
	pop-i18n
	pop-image
	pop-kettle
	pop-loader
	pop-log
	pop-mail
	pop-mime
	pop-module
	pop-nav
	pop-paginator
	pop-pdf	Installation
	Basic Use
	Building a PDF
	Importing a PDF
	Coordinates
	Documents	Fonts
	Forms
	Metadata

	Pages	Images
	Color
	Paths
	Text
	Annotations
	Fields

	pop-queue
	pop-router
	pop-service
	pop-session
	pop-storage
	pop-utils
	pop-validator
	pop-view
	popcorn

	Changelog

 Pop PHP Framework

 	
	Reference
	pop-pdf
	
 Edit on GitHub

pop-pdf

The popphp/pop-pdf component provides a robust API for the creation and management of PDF documents.
Many features of the PDF format are supported, including embedding images and fonts, as well as
importing other PDFs.

Installation

Install it directly into your project:

composer require popphp/pop-pdf

Or, include it in your composer.json file:

{
 "require": {
 "popphp/pop-pdf": "^4.2.1"
 }
}

Basic Use

PDF generation in an application is typically a required feature for any application that
does any type of in-depth reporting or data exporting. Many applications may require this
exported data to be in a concise, well-formatted and portable document and PDF provides this.

The PDF specification, as well as its shared assets’ specifications, such as fonts and images,
are an extremely large and complex set of rules and syntax. This component attempts to harness
the power and features defined by those specifications and present an intuitive API that puts
the power of PDF at your fingertips.

Building a PDF

At the center of the popphp/pop-pdf component is the main Pop\Pdf\Pdf class. It serves
as a manager or controller of sorts for all of the various PDF assets that will pass through
during the process of PDF generation. The different assets are each outlined with their own
section below.

Here’s a simple example building and generating a PDF document with some text. The finer points
of what’s happening will be explained more in depth in the later sections.

use Pop\Pdf\Pdf;
use Pop\Pdf\Document;
use Pop\Pdf\Document\Font;
use Pop\Pdf\Document\Page;

// Create a page and add the text to it
$page = new Page(Page::LETTER);
$page->addText(new Page\Text('Hello World!', 24), Font::ARIAL, 50, 650);

// Create a document, add the font to it and then the page
$document = new Document();
$document->addFont(new Font(Font::ARIAL));
$document->addPage($page);

// Pass the document to the Pdf object to build it and output it to HTTP
$pdf = new Pdf();
$pdf->outputToHttp($document);

Importing a PDF

Importing an existing PDF or pages from one may be required in your application. Using the main
PDF object, you can specify the pdf to import as well as the select pages you may wish to import.
From there you can either select pages to modify or add new pages to the document. When you do
import an existing PDF, the method will return a parsed and working document object. In the example
below, we will import pages 2 and 5 from the existing PDF, add a new page in between them and
then save the new document:

use Pop\Pdf\Pdf;
use Pop\Pdf\Document;
use Pop\Pdf\Document\Font;
use Pop\Pdf\Document\Page;

$pdf = new Pdf();
$document = $pdf->importFromFile('doc.pdf', [2, 5])

// Create a page and add the text to it
$page = new Page(Page::LETTER);
$page->addText(new Page\Text('Hello World!', 24), Font::ARIAL, 50, 650);

// Create a document, add the font to it and then the page
$document = new Document();
$document->addFont(new Font(Font::ARIAL));
$document->addPage($page);
$document->orderPages([1, 3, 2]); // 3 being our new page.

// Pass the document to the Pdf object to build it and write it to a new file
$pdf = new Pdf();
$pdf->writeToFile('new-doc.pdf');

When the 2 pages are imported in, they default to page 1 and 2, respectively. Then we can add any
pages we need from there and control the final order of the pages with the orderPages method
like in the above example.

If you wish to import the whole PDF and all of its pages, simply leave the $pages parameter blank.

Coordinates

It should be noted that the PDF coordinate system has its origin (0, 0) at the bottom left. In the
example above, the text was placed at the (x, y) coordinate of (50, 650). When placed on a page that
is set to the size of a letter, which is 612 points x 792 points, that will make the text appear in
the top left. It the coordinates of the text were set to (50, 50) instead, the text would have appeared
in the bottom left.

As this coordinate system may or may not suit a developer’s personal preference or the requirements
of the application, the origin point of the document can be set using the following method:

use Pop\Pdf\Document;

$document = new Document();
$document->setOrigin(Document::ORIGIN_TOP_LEFT);

Now, with the document’s origin set to the top left, when you place assets into the document, you can
base it off of the new origin point. So for the text in the above example to be placed in the same place,
the new (x, y) coordinates would be (50, 142).

Alternatively, the full list of constants in the Pop\Pdf\Document class that represent the
different origins are:

	ORIGIN_TOP_LEFT

	ORIGIN_TOP_RIGHT

	ORIGIN_BOTTOM_LEFT

	ORIGIN_BOTTOM_RIGHT

	ORIGIN_CENTER

Documents

A document object represents the top-level “container” object of the the PDF document. As you create
the various assets that are to be placed in the PDF document, you will inject them into the document
object. At the document level, the main assets that can be added are fonts, forms, metadata
and pages. The font and form objects are added at the document level as they can be re-used on the
page level by other assets. The metadata object contains informational data about the document, such as
title and author. And the page objects contain all of the page-level assets, as detailed below.

Fonts

Font objects are the global document objects that contain information about the fonts that can be used
by the text objects within the pages of the document. A font can either be one of the standard fonts
supported by PDF natively, or an embedded font from a font file.

Standard Fonts

The set of standard, native PDF fonts include:

	Arial

	Arial,Italic

	Arial,Bold

	Arial,BoldItalic

	Courier

	Courier-Oblique

	Courier-Bold

	Courier-BoldOblique

	CourierNew

	CourierNew,Italic

	CourierNew,Bold

	CourierNew,BoldItalic

	Helvetica

	Helvetica-Oblique

	Helvetica-Bold

	Helvetica-BoldOblique

	Symbol

	Times-Roman

	Times-Bold

	Times-Italic

	Times-BoldItalic

	TimesNewRoman

	TimesNewRoman,Italic

	TimesNewRoman,Bold

	TimesNewRoman,BoldItalic

	ZapfDingbats

When adding a standard font to the document, you can add it and then reference it by name throughout
the building of the PDF. For reference, there are constants available in the Pop\Pdf\Document\Font
class that have the correct standard font names stored in them as strings.

use Pop\Pdf\Document;
use Pop\Pdf\Document\Font;

$font = new Font(Font::TIMES_NEW_ROMAN_BOLDITALIC);

$document = new Document();
$document->addFont($font);

Now, the font defined as “TimesNewRoman,BoldItalic” is available to the document and for any text for which
you need it.

Embedded Fonts

The embedded font types that are supported are:

	TrueType

	OpenType

	Type1

When embedding an external font, you will need access to its name to correctly reference it by string
much in the same way you do for a standard font. That name becomes accessible once you create a font object
with an embedded font and it is successfully parsed.

Notice about embedded fonts

There may be issues embedding a font if certain font data or font files are missing, incomplete
or corrupted. Furthermore, there may be issues embedding a font if the correct permissions or licensing
are not provided.

use Pop\Pdf\Document;
use Pop\Pdf\Document\Font;
use Pop\Pdf\Document\Page;

$customFont = new Font('custom-font.ttf');

$document = new Document();
$document->embedFont($customFont);

$text = new Page\Text('Hello World!', 24);

$page = new Page(Page::LETTER);
$page->addText($text, $customFont->getName(), 50, 650);

The above example will attach the name and reference of the embedded custom font to that text object.
Additionally, when a font is added or embedded into a document, its name becomes the current font, which
is a property you can access like this:

$page->addText($text, $document->getCurrentFont(), 50, 650);

If you’d like to override or switch the current document font back to another font that’s available,
you can do so like this:

$document->setCurrentFont('Arial');

Forms

Form objects are the global document objects that contain information about fields that are to be used
within a Form object on a page in the document. By themselves they are fairly simple to use and inject
into a document object. From there, you would add fields to a their respective pages, while attaching
them to a form object.

The example below demonstrates how to add a form object to a document:

use Pop\Pdf\Document;
use Pop\Pdf\Document\Form;

$form = new Form('contact_form');

$document = new Document();
$document->addForm($form);

Then, when you add a field to a page, you can reference the form to attach it to:

use Pop\Pdf\Document\Page;

$name = new Page\Field\Text('name');
$name->setWidth(200)
 ->setHeight(40);

$page = new Page(Page::LETTER);
$page->addField($name, 'contact_form', 50, 650);

The above example creates a name field for the contact form, giving it a width and height and placing
it at the (50, 650) coordinated. Fields will be covered more in depth below.

Metadata

The metadata object contains the document identifier data such as title, author and date. This is the data
that is commonly displayed in the the document title bar and info boxes of a PDF reader. If you’d like
to set the metadata of the document, you can with the following API:

use Pop\Pdf\Document;

$metadata = new Document\Metadata();
$metadata->setTitle('My Document')
 ->setAuthor('Some Author')
 ->setSubject('Some Subject')
 ->setCreator('Some Creator')
 ->setProducer('Some Producer')
 ->setCreationDate('August 19, 2015')
 ->setModDate('August 22, 2015')

$document = new Document();
$document->setMetadata($metadata);

And there are getter methods that follow the same naming convention to retrieve the data from the
metadata object.

Pages

Page objects contain the majority of the assets that you would expect to be on a page within a PDF document.
A page’s size can be either custom-defined or one of the predefined sizes. There are constants that define
those predefine sizes for reference:

	ENVELOPE_10 (297 x 684)

	ENVELOPE_C5 (461 x 648)

	ENVELOPE_DL (312 x 624)

	FOLIO (595 x 935)

	EXECUTIVE (522 x 756)

	LETTER (612 x 792)

	LEGAL (612 x 1008)

	LEDGER (1224 x 792)

	TABLOID (792 x 1224)

	A0 (2384 x 3370)

	A1 (1684 x 2384)

	A2 (1191 x 1684)

	A3 (842 x 1191)

	A4 (595 x 842)

	A5 (420 x 595)

	A6 (297 x 420)

	A7 (210 x 297)

	A8 (148 x 210)

	A9 (105 x 148)

	B0 (2920 x 4127)

	B1 (2064 x 2920)

	B2 (1460 x 2064)

	B3 (1032 x 1460)

	B4 (729 x 1032)

	B5 (516 x 729)

	B6 (363 x 516)

	B7 (258 x 363)

	B8 (181 x 258)

	B9 (127 x 181)

	B10 (91 x 127)

use Pop\Pdf\Document\Page;

$legal = new Page(Page::LEGAL);
$custom = new Page(640, 480);

The above example creates two pages - one legal size and one a custom size of 640 x 480.

Images

An image object allows you to place an image onto a page in the PDF document, as well as
control certain aspects of that image, such as size and resolution. The image types that are
supported are:

	JPG (RGB, CMYK or Grayscale)

	PNG (8-Bit Index)

	PNG (8-Bit Index w/ Transparency)

	PNG (24-Bit RGB or Grayscale)

	GIF (8-Bit Index)

	GIF (8-Bit Index w/ Transparency)

Here is an example of embedding a large image and resizing it down before placing on the page:

use Pop\Pdf\Document\Page;

$image = Page\Image::createImageFromFile('/path/to/some/image.jpg')
$image->resizeToWidth(320);

$page = new Page(Page::LETTER);
$page->addImage($image, 50, 650);

In the above example, the large image is processed (down-sampled) and resized to a width of 320
pixels and placed into the page at the coordinates of (50, 650).

If you wanted to preserve the image’s high resolution, but fit it into the smaller dimensions,
you can do that by setting the $preserveResolution flag in the resize method.

$image->resizeToWidth(320, true);

This way, the high resolution image is not processed or down-sampled and keeps its high quality.
It is only placed into scaled down dimensions.

Color

With path and text objects, you will need to set colors to render them correctly. The main 3 colorspaces
that are supported are RGB, CMYK and Grayscale. Each color space object is created by instantiating
it and passing the color values:

use Pop\Pdf\Document\Page\Color;

$red = new Color\Rgb(255, 0, 0); // $r, $g, $b (0 - 255)
$cyan = new Color\Cmyk(100, 0, 0, 0); // $c, $m, $y, $k (0 - 100)
$gray = new Color\Gray(50); // $gray (0 - 100)

These objects are then passed into the methods that consume them, like setFillColor and setStrokeColor
within the path and text objects.

Paths

Since vector graphics are at the core of PDF, the path class contains a robust API that allows you
to no only draw various paths and shapes, but also set their colors and styles. On instantiation,
you can set the style of the path object:

use Pop\Pdf\Document\Page\Path;
use Pop\Pdf\Document\Page\Color\Rgb;

$path = new Path(Path::FILL_STROKE);
$path->setFillColor(new Rgb(255, 0, 0))
 ->setStrokeColor(new Rgb(0, 0, 0))
 ->setStroke(2);

The above example created a path object with the default style of fill and stroke, and set the fill color
to red, the stroke color to black and the stroke width to 2 points. That means that any paths that are
drawn from here on out will have those styles until they are changed. You can create and draw more than
one path or shape with in path object. The path class has constants that reference the different style
types you can set:

	STROKE

	STROKE_CLOSE

	FILL

	FILL_EVEN_ODD

	FILL_STROKE

	FILL_STROKE_EVEN_ODD

	FILL_STROKE_CLOSE

	FILL_STROKE_CLOSE_EVEN_ODD

	CLIPPING

	CLIPPING_FILL

	CLIPPING_NO_STYLE

	CLIPPING_EVEN_ODD

	CLIPPING_EVEN_ODD_FILL

	CLIPPING_EVEN_ODD_NO_STYLE

	NO_STYLE

From there, this is the core API that is available:

	$path->setStyle($style);

	$path->setFillColor(Color\ColorInterface $color);

	$path->setStrokeColor(Color\ColorInterface $color);

	$path->setStroke($width, $dashLength = null, $dashGap = null);

	$path->openLayer();

	$path->closeLayer();

	$path->drawLine($x1, $y1, $x2, $y2);

	$path->drawRectangle($x, $y, $w, $h = null);

	$path->drawRoundedRectangle($x, $y, $w, $h = null, $rx = 10, $ry = null);

	$path->drawSquare($x, $y, $w);

	$path->drawRoundedSquare($x, $y, $w, $rx = 10, $ry = null);

	$path->drawPolygon($points);

	$path->drawEllipse($x, $y, $w, $h = null);

	$path->drawCircle($x, $y, $w);

	$path->drawArc($x, $y, $start, $end, $w, $h = null);

	$path->drawChord($x, $y, $start, $end, $w, $h = null);

	$path->drawPie($x, $y, $start, $end, $w, $h = null);

	$path->drawOpenCubicBezierCurve($x1, $y1, $x2, $y2, $bezierX1, $bezierY1, $bezierX2, $bezierY2);

	$path->drawClosedCubicBezierCurve($x1, $y1, $x2, $y2, $bezierX1, $bezierY1, $bezierX2, $bezierY2);

	$path->drawOpenQuadraticBezierCurve($x1, $y1, $x2, $y2, $bezierX, $bezierY, $first = true);

	$path->drawClosedQuadraticBezierCurve($x1, $y1, $x2, $y2, $bezierX, $bezierY, $first = true);

Extending the original code example above, here is an example of drawing a rectangle and placing it on
a page:

use Pop\Pdf\Pdf;
use Pop\Pdf\Document;
use Pop\Pdf\Document\Page;
use Pop\Pdf\Document\Page\Path;
use Pop\Pdf\Document\Page\Color\Rgb;

// Create a path object, set the styles and draw a rectangle
$path = new Path(Path::FILL_STROKE);
$path->setFillColor(new Rgb(255, 0, 0))
 ->setStrokeColor(new Rgb(0, 0, 0))
 ->setStroke(2)
 ->drawRectangle(100, 600, 200, 100);

// Create a page and add the path to it
$page = new Page(Page::LETTER);
$page->addPath($path);

// Create a document and add the page
$document = new Document();
$document->addPage($page);

// Pass the document to the Pdf object to build it and output it to HTTP
$pdf = new Pdf();
$pdf->outputToHttp($document);

Layers

As the API shows, you can also layer paths using the openLayer() and closeLayer() methods
which open and close an independent graphics state. Any paths added while in this state will render
onto that “layer.” Any paths rendered after the state is closed will render above that layer.

Clipping Paths

The path object also supports clipping paths via setting the path style to a clipping style. In doing
so, the path will render as a clipping path or “mask” over any paths before it.

Text

With text objects, you can control a number of parameters that affect how the text is displayed
beyond which font is used and the size. As with path objects, you can set color and style, as well
as a few other parameters. As one of the above examples demonstrated, you can create a text object
like this:

use Pop\Pdf\Document\Page;

$text = new Page\Text('Hello World!', 24);

// Create a page and add the text to it
$page = new Page(Page::LETTER);
$page->addText($text, 'Arial', 50, 650);

The above code create a text object with the font size of 24 points and added it to a page using
the Arial font. From there, you can do more with the text object API. Here is what the API looks
like for a text object:

	$text->setFillColor(Color\ColorInterface $color);

	$text->setStrokeColor(Color\ColorInterface $color);

	$text->setStroke($width, $dashLength = null, $dashGap = null);

	$test->setRotation($rotation);

	$test->setTextParams($c = 0, $w = 0, $h = 100, $v = 100, $rot = 0, $rend = 0);

With the setTextParams() method, you can set the following render parameters:

	$c - character spacing

	$w - word spacing

	$h - horizontal stretch

	$v - vertical stretch

	$rot - rotation in degrees

	$rend - render mode 0 - 7;

	0 - Fill

	1 - Stroke

	2 - Fill and stroke

	3 - Invisible

	4 - Fill then use for clipping

	5 - Stroke the use for clipping

	6 - Fill and stroke and use for clipping

	7 - Use for clipping

Extending the example above, we can render red text to the page like this:

use Pop\Pdf\Pdf;
use Pop\Pdf\Document;
use Pop\Pdf\Document\Font;
use Pop\Pdf\Document\Page;

// Create the text object and set the fill color
$text = new Page\Text('Hello World!', 24);
$text->setFillColor(new Rgb(255, 0, 0));

// Create a page and add the text to it
$page = new Page(Page::LETTER);
$page->addText($text, Font::ARIAL, 50, 650);

// Create a document, add the font to it and then the page
$document = new Document();
$document->addFont(new Font(Font::ARIAL));
$document->addPage($page);

// Pass the document to the Pdf object to build it and output it to HTTP
$pdf = new Pdf();
$pdf->outputToHttp($document);

Annotations

Annotation objects give you the functionality to add internal document links and external
web links to the page. At the base of an annotation object, you would set the width and
height of the annotation’s click area or “hot spot.” For an internal annotation, you would
pass in a set of target coordinates as well:

use Pop\Pdf\Document\Page\Annotation;

$link = new Annotation\Link(200, 25, 50, 650); // $width, $height, $xTarget, $yTarget

In the above example, an internal annotation object that is 200 x 25 in width and height has
been created and is linked to the coordinates of (50, 650) on the current page. If you’d like
to target coordinates on a different page, you can set that as well:

$link->setPageTarget(3);

And if you would like to zoom in on the target, you can set the Z target as well:

$link->setZTarget(2);

For external URL annotations, instead of an internal set of coordinates, you would pass
the URL into the constructor:

use Pop\Pdf\Document\Page\Annotation;

$link = new Annotation\Url(200, 25, 'http://www.mywebsite.com/');

The above example will create an external annotation link that, when clicked, will link out
to the URL given.

Fields

As mentioned earlier, field objects are the entities that collect user input and attach that
data to form objects. The benefit of this is the ability to save user input within the document.
The field types that are supported are:

	Text (single and multi-line)

	Choice

	Button

Here is an example creating a simple set of fields and attaching them to a form object:

use Pop\Pdf\Document;
use Pop\Pdf\Document\Form;
use Pop\Pdf\Document\Page;

// Create the form object and inject it into the document object
$form = new Form('contact_form');

$document = new Document();
$document->addForm($form);

$name = new Page\Field\Text('name');
$name->setWidth(200)
 ->setHeight(40);

$colors = new Page\Field\Choice('colors');
$colors->addOption('Red')
 ->addOption('Green')
 ->addOption('Blue')

$comments = new Page\Field\Text('comments');
$comments->setWidth(200)
 ->setHeight(100)
 ->setMultiline();

$page = new Page(Page::LETTER);
$page->addField($name, 'contact_form', 50, 650)
 ->addField($colors, 'contact_form', 50, 600)
 ->addField($comments, 'contact_form', 50, 550);

In the above example, the fields are created, attached to the form object and added
to the page object.

 Previous
 Next

 © Copyright 2023 NOLA Interactive.
 Revision b5030cde.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	v4.8.0
	v4.7.0
	v4.6.0
	v4.5.0
	v4.1.0
	v4.0.0

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

